Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
2.
BMC Neurol ; 24(1): 101, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504162

RESUMO

Preclinical and clinical studies have indicated that combining photobiomodulation (PBM) therapy with other therapeutic approaches may influence the treatment process in a variety of disorders. The purpose of this systematic review was to determine whether PBM-combined therapy provides additional benefits over monotherapies in neurologic and neuropsychiatric disorders. In addition, the review describes the most commonly used methods and PBM parameters in these conjunctional approaches.To accomplish this, a systematic search was conducted in Google Scholar, PubMed, and Scopus databases through January 2024. 95 potentially eligible articles on PBM-combined treatment strategies for neurological and neuropsychological disorders were identified, including 29 preclinical studies and 66 clinical trials.According to the findings, seven major categories of studies were identified based on disease type: neuropsychiatric diseases, neurodegenerative diseases, ischemia, nerve injury, pain, paresis, and neuropathy. These studies looked at the effects of laser therapy in combination with other therapies like pharmacotherapies, physical therapies, exercises, stem cells, and experimental materials on neurological disorders in both animal models and humans. The findings suggested that most combination therapies could produce synergistic effects, leading to better outcomes for treating neurologic and psychiatric disorders and relieving symptoms.These findings indicate that the combination of PBM may be a useful adjunct to conventional and experimental treatments for a variety of neurological and psychological disorders.


Assuntos
Terapia com Luz de Baixa Intensidade , Doenças do Sistema Nervoso , Animais , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Terapia Combinada , Doenças do Sistema Nervoso/radioterapia , Paresia
3.
Expert Opin Drug Deliv ; : 1-15, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555483

RESUMO

INTRODUCTION: Central nervous system (CNS)-related disorders are increasingly being recognized as a global health challenge worldwide. There are significant challenges for effective diagnosis and treatment due to the presence of the CNS barriers which impede the management of neurological diseases. Combination of nanovesicles (NVs) and magnetic nanoparticles (MNPs), referred to as magnetic nanovesicles (MNVs), is now well suggested as a potential theranostic option for improving the management of neurological disorders with increased targeting efficiency and minimized side effects. AREAS COVERED: This review provides a summary of major CNS disorders and the physical barriers limiting the access of imaging/therapeutic agents to the CNS environment. A special focus on the unique features of MNPs and NV is discussed which make them attractive candidates for neuro-nanomedicine. Furthermore, a deeper understanding of MNVs as a promising combined strategy for diagnostic and/or therapeutic purposes in neurological disorders is provided. EXPERT OPINION: The multifunctionality of MNVs offers the ability to overcome the CNS barriers and can be used to monitor the effectiveness of treatment. The insights provided will guide future research toward better outcomes and facilitate the development of next-generation, innovative treatments for CNS disorders.

4.
Neurochem Res ; 49(4): 1093-1104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291264

RESUMO

Menopause results in estrogen hormone deficiency which causes changes in brain morphology and cognitive impairments. The risk of breast and ovarian cancer increases with estrogen therapy. Thus, finding a substitute treatment option for women in menopause is necessary. In the current study, the impact of chronic sericin treatment (200 mg/kg/day for 6 weeks, gavage) on memory process, oxidative stress markers, synaptic neurotransmission, and acetylcholinesterase (AChE) activity in the hippocampus (HIP) of ovariectomized (OVX) mice was examined and compared to the effects of 17ß-estradiol (Es; 20 µg/kg, s.c.). The results demonstrated that sericin and Es administration improved spatial and recognition memory of the OVX animals in the both Lashley III maze and novel object recognition tests. Moreover, sericin-treated OVX mice showed decreased ROS levels, increased endogenous antioxidant defense capacity, and decreased AChE activity in the HIP. Additionally, sericin and Es therapy up-regulated pre-and-post-synaptic protein markers and increased BDNF, CREB, and protein kinase A (PKA) protein expressions in the HIP of OVX mice. Overall, the activation of the PKA-CREB-BDNF signaling pathway by sericin can provide protection against OVX-induced cognitive dysfunction, making it a potential alternative for managing cognitive deficits in postmenopausal women.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Sericinas , Humanos , Camundongos , Feminino , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Acetilcolinesterase/metabolismo , Hipocampo/metabolismo , Estrogênios/metabolismo , Estresse Oxidativo , Transdução de Sinais , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Ovariectomia
5.
Brain Res ; 1821: 148583, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717889

RESUMO

Prolonged microgravity exposure causes cognitive impairment. Evidence shows that oxidative stress and neuroinflammation are involved in the causation. Here, we explore the effectiveness of transcranial near-infrared photobiomodulation (PBM) on cognitive deficits in a mouse model of simulated microgravity. 24 adult male C57BL/6 mice were assigned into three groups (8 in each); control, hindlimb unloading (HU), and HU + PBM groups. After surgery to fit the suspension fixing, the animals were housed either in HU cages or in their normal cage for 14 days. The mice in the HU + PBM group received PBM (810 nm laser, 10 Hz, 8 J/cm2) once per day for 14 days. Spatial learning and memory were assessed in the Lashley III maze and hippocampus tissue samples were collected to assess oxidative stress markers and protein expression of brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), Sirtuin 1 (Sirt1), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Behavioral testing showed that the PBM-treated animals had a shorter latency time to find the target and fewer errors than the HU group. PBM decreased hippocampal lipid peroxidation while increasing antioxidant defense systems (glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to HU mice. PBM increased protein expression of Sirt1, Nrf2, and BDNF while decreasing NF-κB compared to HU mice. Our findings suggested that the protective effect of PBM against HU-induced cognitive impairment involved the activation of the Sirt1/Nrf2 signaling pathway, up-regulation of BDNF, and reduction of neuroinflammation and oxidative stress in the hippocampus.


Assuntos
Antioxidantes , Ausência de Peso , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Elevação dos Membros Posteriores , Fator Neurotrófico Derivado do Encéfalo/metabolismo , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Transtornos da Memória/metabolismo , Aprendizagem em Labirinto , Transdução de Sinais , Hipocampo/metabolismo
6.
Chin J Physiol ; 66(4): 209-219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635480

RESUMO

Sericin (Ser) is a natural neuroactive macromolecule with diverse pharmacological properties, and our previous findings have shown its neuroprotective potentials. This study aimed to investigate the therapeutic potential of Ser on cognitive dysfunction induced by transient global cerebral ischemia/reperfusion (tGI/R) and its mechanism of action. The tGI/R was induced in BALB/c mice by bilateral occlusion of the common carotid arteries for two 5 min followed by a 10-min reperfusion period. After 24 h, mice were treated with normal saline or different doses of Ser (100, 200, and 300 mg/kg) for 10 days. Cognitive performances were assessed using the Barnes maze and social interaction tasks. Oxidative stress markers including superoxide dismutase (SOD), glutathione peroxidase (GPx), total antioxidant capacity (TAC), and malondialdehyde (MDA) as well as pro-inflammatory cytokines (interleukin (IL)-6 and tumor necrosis factor-alpha) and anti-inflammatory cytokine (IL-10) were assessed in the hippocampus. Markers of apoptosis (pro- and cleaved caspase-9 and 3, Bax, and Bcl-2) were assessed by Western blotting. Besides, transferase-mediated dUTP nick end-labeling assay was used to detect apoptotic cell death. We show here that Ser administration improved tGI/R-induced cognitive deficits, enhanced the activity of SOD and GPx, increased TAC levels, while reduced MDA levels. Notably, Ser decreased neuronal apoptotic cell death in the hippocampal dentate gyrus (DG) region, accompanied by suppression of neuroinflammation, downregulation of pro-apoptotic proteins (caspase-9, caspases-3, and Bax), and upregulation of anti-apoptotic protein, Bcl-2. Taken together, Ser administration protected hippocampal neurons from apoptotic cell death by impeding oxidative stress and inflammatory responses and, in turn, improved cognitive function in the tGI/R mice.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Sericinas , Camundongos , Animais , Caspase 9/metabolismo , Sericinas/metabolismo , Sericinas/uso terapêutico , Proteína X Associada a bcl-2/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Apoptose , Estresse Oxidativo , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/tratamento farmacológico , Antioxidantes/farmacologia , Citocinas/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Superóxido Dismutase/metabolismo
7.
Neuroscience ; 529: 62-72, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591334

RESUMO

Cerebral ischemia is one of the major problems threatening global health. Many of the cerebral ischemia survivors would suffer from the physical and cognitive disabilities for their whole lifetime. Cell based-therapies have been introduced as a therapeutic approach for alleviating ischemia-enforced limitations. Photothrombotic stroke model was applied on the left medial prefrontal cortex (mPFC) of adult male BALB/c mice. Then, pericytes isolated from brain microvessels of adult male BALB/c mice, microglia isolated from brain cortices of the neonatal male BALB/c mice, and M2 phenotype shifted microglia by IL-4 treatment were used for transplantation into the injured area after 24 h of ischemia induction. The behavioural outcomes evaluated by social interaction and Barnes tests and the levels of growth associated protein (GAP)-43 and inflammatory cytokine interleukin (IL)-1 protein were assessed by western blotting 7 days after cell transplantation. Animals in both of the microglia + pericytes and microglia M2 + pericytes transplanted groups showed better performance in social memory as well as enhanced spatial learning and memory compared to ischemic controls. Also, improved escape latency was only observed in microglia M2 + pericytes (p < 0.01) group compared to ischemic controls. GAP-43 showed significant protein expression in microglia + pericytes and microglia M2 + pericytes groups compared to the control group. Conversely, IL-1 levels diminished in all of the pericytes microglia + pericytes, and microglia M2 + pericytes groups compared to the ischemic controls. Current study highlights efficiency of M2 microglia and pericytes combinatory transplantation therapeutic role on relieving ischemic stroke outcomes.


Assuntos
Isquemia Encefálica , Microglia , Camundongos , Animais , Masculino , Microglia/metabolismo , Pericitos/metabolismo , Isquemia Encefálica/metabolismo , Córtex Pré-Frontal/metabolismo , Cognição , Proteína GAP-43/metabolismo , Isquemia/metabolismo
8.
Biotechnol Prog ; 39(5): e3356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37198722

RESUMO

Genetically modified immune cells, especially CAR-T cells, have captured the attention of scientists over the past 10 years. In the fight against cancer, these cells have a special place. Treatment for hematological cancers, autoimmune disorders, and cancers must include CAR-T cell therapy. Determining the therapeutic targets, side effects, and use of CAR-T cells in neurological disorders, including cancer and neurodegenerative diseases, is the goal of this study. Due to advancements in genetic engineering, CAR-T cells have become crucial in treating some neurological disorders. CAR-T cells have demonstrated a positive role in treating neurological cancers like Glioblastoma and Neuroblastoma due to their ability to cross the blood-brain barrier and use diverse targets. However, CAR-T cell therapy for MS diseases is being researched and could be a potential treatment option. This study aimed to access the most recent studies and scientific articles in the field of CAR-T cells in neurological diseases and/or disorders.

9.
J Neurotrauma ; 40(13-14): 1481-1494, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36869619

RESUMO

Abstract Traumatic brain injury (TBI) continues to be a major cause of death and disability worldwide. This study assessed the effectiveness of non-invasive vagus nerve stimulation (nVNS) in reducing brain lesion volume and improving neurobehavioral performance in a rat model of TBI. Animals were randomized into three experimental groups: (1) TBI with sham stimulation treatment (Control), (2) TBI treated with five lower doses (2-min) nVNS, and (3) TBI treated with five higher doses (2 × 2-min) nVNS. We used the gammaCore nVNS device to deliver stimulations. Magnetic resonance imaging studies were performed 1 and 7 days post-injury to confirm lesion volume. We observed smaller brain lesion volume in the lower dose nVNS group compared with the control group on days 1 and 7. The lesion volume for the higher dose nVNS group was significantly smaller than either the lower dose nVNS or the control groups on days 1 and 7 post-injury. The apparent diffusion coefficient differences between the ipsilateral and contralateral hemispheres on day 1 were significantly smaller for the higher dose (2 × 2 min) nVNS group than for the control group. Voxel-based morphometry analysis revealed an increase in the ipsilateral cortical volume in the control group caused by tissue deformation and swelling. On day 1, these abnormal volume changes were 13% and 55% smaller in the lower dose and higher dose nVNS groups, respectively, compared with the control group. By day 7, nVNS dampened cortical volume loss by 35% and 89% in the lower dose and higher dose nVNS groups, respectively, compared with the control group. Rotarod, beam walking, and anxiety performances were significantly improved in the higher-dose nVNS group on day 1 compared with the control group. The anxiety indices were also improved on day 7 post-injury compared with the control and the lower-dose nVNS groups. In conclusion, the higher dose nVNS (five 2 × 2-min stimulations) reduced brain lesion volume to a level that further refined the role of nVNS therapy for the acute treatment of TBI. Should nVNS prove effective in additional pre-clinical TBI models and later in clinical settings, it would have an enormous impact on the clinical practice of TBI in both civilian and military settings, as it can easily be adopted into routine clinical practice.


Assuntos
Lesões Encefálicas Traumáticas , Estimulação do Nervo Vago , Ratos , Animais , Estimulação do Nervo Vago/métodos , Método Duplo-Cego , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Encéfalo/diagnóstico por imagem
10.
Behav Pharmacol ; 34(4): 197-205, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36853847

RESUMO

Posttraumatic stress disorder (PTSD) is a serious neuropsychiatric disorder that occurs after exposure to stressful, fearful, or troubling events. Cerebrolysin (CBL), consists of low molecular weights neurotrophic factors and amino acids obtained from purified porcine brain proteins. This study aimed to evaluate the possible therapeutic effects of enriched environment (EE) and CBL alone or combined for reducing anxiety and cognitive deficits in PTSD-like mouse models. For this purpose, inescapable electric foot shocks were delivered to Balb/c mice for two consecutive days. Then mice were treated with CBL (2.5 mL/kg) and/or were kept in EE (2 h per day) or received their combination for 14 consecutive days. The hole-board test and Lashley III paradigm were used to assess anxiety and spatial learning and memory, respectively. Changes in the serum corticosterone level and expression of synaptic elements, including; growth-associated protein 43, post-synaptic density 95, and synaptophysin were assessed in the hippocampus. This model caused anxiety and spatial memory impairment associated with increased serum corticosterone levels and decreased synaptic elements. Nevertheless, CBL and/or combination treatment could reverse behavioral and molecular alterations. Our findings indicated that CBL, separately or in combination with EE, is effective in reducing anxiety and spatial memory impairment in PTSD-like mice.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Camundongos , Suínos , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Corticosterona/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Aminoácidos/farmacologia , Aminoácidos/metabolismo , Hipocampo , Transtornos da Memória/etiologia , Cognição , Modelos Animais de Doenças
11.
J Stroke Cerebrovasc Dis ; 31(12): 106801, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257142

RESUMO

OBJECTIVES: Dysfunction in mitochondrial activity may have profound role in ischemic stroke-induced neuronal death, hence maintaining the mitochondrial function seems to be valuable for neuronal viability and neurological improvement. METHODS: C57BL/6J mice were allocated into sham and stroke groups. Mice in the stroke groups underwent photothrombosis-induced stroke in the medial prefrontal cortex (mPFC) and were divided into the following subgroups; RB, Mito 85, Mito 170, and Mito 340, and received their respective treatments via intra-nasal route every other day (3 days per week) for one week. A battery of behavioral tests including social interaction, passive avoidance, and the Lashley III maze was used to investigate social, contextual, and spatial memories. Moreover, changes in mitochondrial function, including reactive oxygen species (ROS) and ATP levels, and mitochondrial membrane potential, were assessed in mPFC. The expression of growth-associated protein 43 (GAP-43), post-synaptic density-95 (PSD-95), and synaptophysin (SYP) was detected by western blotting. RESULTS: Behavioral results revealed that mitotherapy alleviated ischemia-induced memory impairment. Also, transplantation of exogenous mitochondria lowered ROS, restored ATP generation, and improved mitochondrial membrane potential. Induction of ischemia decreased the levels of synaptic markers in mPFC while exogenous mitochondria (170 and 340µg) significantly upregulated the expression of GAP-43 and PSD-95 after ischemic stroke. CONCLUSION: Our research highlighted the importance of mitotherapy in regulating synaptic markers expression and mitochondria function, which could represent a potential strategy for improving cognitive and memory deficits following stroke.


Assuntos
Disfunção Cognitiva , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteína GAP-43/metabolismo , Camundongos Endogâmicos C57BL , Administração Intranasal , Mitocôndrias/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Córtex Pré-Frontal , Transtornos da Memória/metabolismo , Trifosfato de Adenosina/metabolismo
12.
Acta Neurobiol Exp (Wars) ; 82(3): 295-303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36214712

RESUMO

Caffeine is a psychoactive compound used widely to enhance cognitive functions in human or animal studies. The present study examined the effects of caffeine on cognitive performance and inflammatory factors in mice with medial prefrontal cortex (mPFC) ischemia. Mice underwent a photothrombotic mPFC ischemic stroke and were treated with normal saline or caffeine at different doses intranasally for 7 days. The sham surgery animals received normal saline intranasally. The Morris water maze test and social interaction test were performed to assess spatial and social memories, respectively. In addition, the levels of inflammatory proteins, including tumor necrosis factor­alpha, interleukin­6, and interleukin­10, were measured in the mPFC using immunoblotting. The results showed that mPFC ischemia impaired spatial memory and social behaviors, and caffeine at doses of 0.05 and 0.1 mg improved behavioral outcomes in the ischemic groups. Also, caffeine reversed ischemia­induced high levels of pro­inflammatory biomarkers and enhanced the expression of the anti­inflammatory mediator. Our findings indicate that caffeine alleviated mPFC ischemia­induced memory disturbances, probably through the modulation of the inflammatory mediators.


Assuntos
Cafeína , Disfunção Cognitiva , Administração Intranasal , Animais , Cafeína/farmacologia , Cafeína/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Isquemia , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos BALB C , Córtex Pré-Frontal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
J Stroke Cerebrovasc Dis ; 31(11): 106727, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162378

RESUMO

BACKGROUND AND PURPOSE: Fecal microbiota transplantation (FMT) is a novel microbiota-based therapeutic method that transfers stool from donor into a recipient and its application is under investigating for neurological disorders such as stroke. In this systematic review, we assessed the effect of FMT in progression and treatment of stroke and recovery of post-stroke complications. METHODS: Preliminary studies were searched in MEDLINE via PubMed, Scopus, COCHRANE library and Google Scholar, databases up to February 2022. The search strategy was restricted to articles about FMT in stroke. The initial search yielded 4570 articles, of which 19 publications were included in our systematic review. RESULTS: Based on outcomes transferring microbiome from healthy or ischemic donor to other ischemic recipient can affect brain infarct volume and survival rate, neurological and behavioral outcomes, and inflammatory pathways. CONCLUSIONS: Our systematic review on preclinical studies showed that manipulating gut microbiota via FMT can be a possible therapeutic approach for treatment of stroke and recovery of post-stroke complications.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Transplante de Microbiota Fecal/efeitos adversos , Transplante de Microbiota Fecal/métodos , Fezes
14.
Exp Gerontol ; 168: 111950, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36089173

RESUMO

The behavioral effects and molecular signaling mechanisms of Coenzyme Q10 (Q10) in age-related memory impairment are poorly understood. This study aimed to investigate the effects of Q10 on memory impairment, oxidative stress, apoptosis, and mitophagy in aged rats. 40 aged (24 months old) and 10 young (3 months old) male Wistar rats were randomly divided into the following groups (n = 10/group): young + vehicle, aged + vehicle, and aged + Q10 (at 100, 200, 300 mg/kg/day doses). Treatments were administrated orally by gavage for 2 weeks. The novel object recognition test was used to assess episodic memory. Oxidative stress, apoptosis, and mitophagy-related protein expressions were measured in the hippocampus. We found that Q10 reversed aging-induced memory impairment at the dose of 300 mg/kg. Moreover, aging was associated with a reduction in ATP production, decrease in mitophagy-related proteins (PINK, Parkin, and P62 levels and LC3II/I ratio), excessive generation of reactive oxygen species and lipid peroxidation, and apoptosis in the hippocampus, which were partially reversed following oral administration of Q10. These findings indicate the therapeutic potential of Q10 in aging-induced memory decline.


Assuntos
Mitofagia , Ubiquinona , Trifosfato de Adenosina/metabolismo , Envelhecimento , Animais , Apoptose , Masculino , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
15.
Int J Pharm ; 625: 122063, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35964827

RESUMO

The development of a therapeutic system for hepatic fibrosis has become a research hotspot to date. Butein, a simple chalcone derivative, displays anti-fibrotic effects through different pathways. However, impurities, low solubility, and low concentration in the target tissue hinder therapy with herbal ingredients. Hepatic stellate cells (HSCs), the vitamin A (VA) storage cells, as the main contributors to liver fibrogenesis, are not readily accessible to drugs owing to their anatomical location. Targeted delivery of therapeutics to the activated HSCs is therefore critical for successful treatment. For these reasons, the current study aimed at increasing butein delivery to the liver. Hence, high purity butein was synthesized in three steps. A novel VA-Myrj52 ester conjugate was also synthesized using all-trans retinoic acid and a hydrophilic emulsifier (Myrj52) as a targeting agent. Next, butein was encapsulated inside the novel VA-modified solid lipid nanoparticles (VA-SLNs) and studied in vitro and in vivo. According to our evaluations, negatively charged SLNs with a mean diameter of 150 nm and entrapment efficacy of 75 % were successful in liver fibrosis amelioration. Intraperitoneal (i.p.) injection of VA-SLNs in fibrotic rats, for four weeks long, reduced serum AST and ALT by 58% (P, 0.001) and 72% (P, 0.05), respectively, concerning the CCl4 group. Additionally, histologic damage score decline and normalization of tissue oxidative stress markers collectively confirmed the efficacy of formulations in hepatic fibrosis and kidney damage amelioration.


Assuntos
Chalconas , Animais , Células Estreladas do Fígado/metabolismo , Lipossomos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Nanopartículas , Ratos , Vitamina A/metabolismo
16.
Curr Pharm Des ; 28(28): 2330-2342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909277

RESUMO

Infection of the central nervous system (CNS) is a global healthcare concern with high rates of death and disease. CNS infections mainly include meningitis, encephalitis, and brain abscesses. Bacteria, viruses, fungi, protozoa, and parasites are the most common causes of neuroinfections. There are many types of medications used in the treatment of CNS infections, but drug delivery through the blood-brain barrier (BBB) is a major challenge to overcome. The BBB is a specialized multicellular barrier separating the neural tissue from the peripheral blood circulation. Unique characteristics of the BBB allow it to tightly control the movement of ions and molecules. Thus, there is a critical need to deal with these conditions with the aim of improving novel antimicrobial agents. Researchers are still struggling to find effective drugs to treat CNS infections. Nanoparticle (NP)-mediated drug delivery has been considered a profound substitute to solve this problem because NPs can be tailored to facilitate drug transport across the BBB. NPs are colloidal systems with a size range of 1-1000 nm, which can be used to encapsulate therapeutics, improve drug transport across the BBB, and target specific brain areas in CNS infections. A wide variety of NPs has been displayed for the CNS delivery of therapeutics, especially when their surfaces are coated with targeting moieties. This study aimed to review the available literature on the application of NPs in CNS infections.


Assuntos
Anti-Infecciosos , Infecções do Sistema Nervoso Central , Doenças Transmissíveis , Anti-Infecciosos/farmacologia , Barreira Hematoencefálica , Encéfalo , Infecções do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Preparações Farmacêuticas
17.
Curr Pharm Des ; 28(24): 1985-2000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35676838

RESUMO

The mean global lifetime risk of neurological disorders such as stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) has shown a large effect on economy and society. Researchers are still struggling to find effective drugs to treat neurological disorders and drug delivery through the blood-brain barrier (BBB) is a major challenge to be overcome. The BBB is a specialized multicellular barrier between peripheral blood circulation and neural tissue. Unique and selective features of the BBB allow it to tightly control brain homeostasis as well as the movement of ions and molecules. Failure in maintaining any of these substances causes BBB breakdown and subsequently enhances neuroinflammation and neurodegeneration. BBB disruption is evident in many neurological conditions. Nevertheless, the majority of currently available therapies have tremendous problems with drug delivery into the impaired brain. Nanoparticle (NP)-mediated drug delivery has been considered a profound substitute to solve this problem. NPs are colloidal systems with a size range of 1-1000 nm which can encapsulate therapeutic payloads, improve drug passage across the BBB, and target specific brain areas in neurodegenerative/ischemic diseases. A wide variety of NPs has been displayed for the efficient brain delivery of therapeutics via intravenous administration, especially when their surfaces are coated with targeting moieties. Here, we discuss recent advances in the development of NP-based therapeutics for the treatment of stroke, PD, and AD, as well as the factors affecting their efficacy after systemic administration.


Assuntos
Doença de Alzheimer , Nanopartículas , Doenças Neurodegenerativas , Doença de Parkinson , Acidente Vascular Cerebral , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico
18.
J Stroke Cerebrovasc Dis ; 31(7): 106519, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35500360

RESUMO

OBJECTIVES: This study examined the beneficial effects of cerebrolysin (CBL) and enriched environment (EE), alone or in combination, on the neurobehavioral and molecular changes in the post-ischemic depression (PID) model in mice. MATERIALS AND METHODS: PID was induced in male Balb/c mice (25-30 g) by combining the transient bilateral common carotid artery occlusion (bCCAO), twice for 5 min at the interval of 10 min, with spatial restraint stress (2 h/day) for 2 weeks, started 48 h following the establishment of bCCAO model. Animals in the treatment groups received CBL (2.5 ml/kg) and/or were housed in EE (2 h/day) for two weeks. Anxiety- and depressive-like behaviors and sociability were evaluated the day after the last experiment. Changes in the serum corticosterone level, the hippocampal oxidative stress status, inflammatory cytokines, brain-derived neurotrophic factor (BDNF), and phosphorylated cAMP response element-binding protein (p-CREB)/CREB ratio were also detected. RESULTS: PID model induced anxiety- and depressive-like behaviors and impaired social behavior. These behavioral changes were accompanied by increased serum corticosterone level, increased lipid peroxidation, decreased antioxidant enzyme activities, reduced BDNF levels and p-CREB/CREB ratio, and increased protein levels of NF-κB and Iba-1 in the hippocampus. However, treatment with CBL and/or EE reversed behavioral and molecular changes induced by PID. CONCLUSION: Our findings imply that the model mimics many manifestations of human PID, and CBL and EE treatments, separately or in combination, are beneficial in reducing anxiety- and- depressive-like behaviors in this model.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Corticosterona , Aminoácidos , Animais , Ansiedade/etiologia , Ansiedade/prevenção & controle , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/metabolismo , Corticosterona/farmacologia , Depressão/etiologia , Depressão/metabolismo , Depressão/terapia , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
19.
Behav Neurol ; 2022: 4825472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35469274

RESUMO

Stroke is the most common reason for adult disabilities and the second ground for death worldwide. Our previous study revealed that selegiline serves as an alternative candidate in transient hypoxia-ischemia. However, aggressive and restless behavior was observed in stroke-induced rats receiving 4 mg/kg selegiline. In comparison, 1 mg/kg selegiline could induce negligible therapeutic effects on mitochondrial dysfunction and histopathological changes. Therefore, we designed oral noisome-based selegiline attached to 4-(4-nitrobenzyl) pyridine to improve transient global ischemia by attenuating cognitive impairments, oxidative stress, and histopathological injury. The investigation was performed in transient hypoxia-ischemia-induced rats by oral administration of nanoformulation containing selegiline (0.25-1 mg/kg) for 4 weeks (3 times a week). Novel object recognition (NOR) was considered to evaluate their cognitive dysfunction. Oxidative stress parameters and brain histopathological assessments were determined following the scarification of rats. Outstandingly, our data demonstrated slower selegiline release from niosomes relative to free drug, which was also in a controlled manner. Our data confirmed significant improvement in cognitive behavior in the NOR test, an increase in glutathione level and total antioxidant power, a decline in MDA and protein carbonyl level, as well as a decreased number of dead cells in histopathological assessment after being exposed to (0.5-1 mg/kg) selegiline-NBP nanoformulation. These data manifested that the selegiline-NBP nanoformulation (0.5-1 mg/kg) could significantly reduce oxidative damage, cognitive dysfunction, and histopathological damage compared to transient hypoxia-ischemia rats, which is 20 times lower than the therapeutic dose in humans. Therefore, the proposed nanoformulation would be capable as an alternative candidate without side effects in stroke.


Assuntos
Disfunção Cognitiva , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Disfunção Cognitiva/tratamento farmacológico , Hipóxia/tratamento farmacológico , Isquemia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos , Selegilina/farmacologia , Selegilina/uso terapêutico , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico
20.
Brain Res Bull ; 181: 36-45, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35066097

RESUMO

Ischemia in the medial prefrontal cortex (mPFC) causes cognitive impairment in stroke cases. This study aimed to examine the effects of varenicline as α7 and α4ß2 nicotine acetylcholine receptors (nAChRs) agonist, on cognitive impairment, inflammation, apoptosis, and synaptic dysfunction in mPFC ischemia. Mice were divided to three groups of control, sham, or photothrombotic mPFC ischemia model. The control and sham groups received 2 ml/kg of normal saline for a 14-day period. As well, the animals in the ischemia groups received normal saline (2 ml/kg) or varenicline at 0.1, 1, and 3 mg/kg doses for a 14-day period. Anxiety-like behaviors were then assessed by open field (OFT) and elevated plus-maze (EPM) tests. Memory was also evaluated using Morris water maze (MWM) and novel object recognition (NOR) tests. The levels of inflammatory (IL-1ß, TNF-α), apoptotic (Bax, caspase3, BCL-2), and synaptic (SYP, PSD-95, and GAP-43) proteins were examined using the western blot method. In addition, the histological evaluation was performed to assess tissue damage. The administration of Varenicline at the dose of 3 mg/kg reduced the IL-1ß, TNF-α, Bax, and caspase3 levels. Moreover, it increased BCL-2, SYP, PSD-95, and GAP-43 levels at the same dose and ameliorated memory impairment and anxiety-like behaviors in mPFC ischemic mice. Varenicline improved cognitive impairment by blocking inflammation and apoptosis, improving synaptic factors, and diminishing tissue damage in the mPFC ischemic mice.


Assuntos
Apoptose/efeitos dos fármacos , Isquemia Encefálica/complicações , Disfunção Cognitiva/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Agonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Vareniclina/farmacologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Comportamento Animal/efeitos dos fármacos , Isquemia Encefálica/imunologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Camundongos , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/fisiopatologia , Agonistas Nicotínicos/administração & dosagem , Córtex Pré-Frontal/imunologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Sinapses/metabolismo , Vareniclina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...